Primitive of x by Arcsecant of x over a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x \arcsec \frac x a \rd x = \begin{cases} \dfrac {x^2} 2 \arcsec \dfrac x a - \dfrac {a \sqrt {x^2 - a^2} } 2 + C & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \\ \dfrac {x^2} 2 \arcsec \dfrac x a + \dfrac {a \sqrt {x^2 - a^2} } 2 + C & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \\ \end{cases}$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arcsec \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \begin {cases} \dfrac a {x \sqrt {x^2 - a^2} } & : 0 < \arcsec \dfrac x a < \dfrac \pi 2 \\ \dfrac {-a} {x \sqrt {x^2 - a^2} } & : \dfrac \pi 2 < \arcsec \dfrac x a < \pi \\ \end {cases}\) Derivative of $\arcsec \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^2} 2\) Primitive of Power


First let $\arcsec \dfrac x a$ be in the interval $\openint 0 {\dfrac \pi 2}$.

Then:

\(\ds \int x \arcsec \frac x a \rd x\) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a - \int \frac {x^2} 2 \paren {\frac a {x \sqrt {x^2 - a^2} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a - \frac a 2 \int \frac {x \rd x} {\sqrt {x^2 - a^2} } + C\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a - \frac a 2 \sqrt {x^2 - a^2} + C\) Primitive of $\dfrac x {\sqrt {x^2 - a^2} }$
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a - \frac {a \sqrt {x^2 - a^2} } 2 + C\) simplifying


Similarly, let $\arcsec \dfrac x a$ be in the interval $\openint {\dfrac \pi 2} \pi$.

Then:

\(\ds \int x \arcsec \frac x a \rd x\) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a - \int \frac {x^2} 2 \paren {\frac {-a} {x \sqrt {x^2 - a^2} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a + \frac a 2 \int \frac {x \rd x} {\sqrt {x^2 - a^2} } + C\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a + \frac a 2 \sqrt {x^2 - a^2} + C\) Primitive of $\dfrac x {\sqrt {x^2 - a^2} }$
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcsec \frac x a + \frac {a \sqrt {x^2 - a^2} } 2 + C\) simplifying

$\blacksquare$


Also see


Sources