Primitive of x by Inverse Hyperbolic Cosine of x over a

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x \arcosh \frac x a \rd x = \paren {\dfrac {x^2} 2 - \dfrac {a^2} 4} \arcosh \dfrac x a - \dfrac {x \sqrt {x^2 - a^2} } 4 + C$


where $\arcosh$ denotes the real area hyperbolic cosine.


Corollary

$\ds \int x \paren {-\cosh^{-1} \frac x a} \rd x = \paren {\dfrac {x^2} 2 - \dfrac {a^2} 4} \paren {-\cosh^{-1} \frac x a} + \dfrac {x \sqrt {x^2 - a^2} } 4 + C$

where $-\cosh^{-1}$ denotes the negative branch of the real inverse hyperbolic cosine multifunction.


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arcosh \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac 1 {\sqrt {x^2 - a^2} }\) Derivative of $\arcosh \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^2} 2\) Primitive of Power


Then:

\(\ds \int x \arcosh \frac x a \rd x\) \(=\) \(\ds \frac {x^2} 2 \arcosh \frac x a - \int \frac {x^2} 2 \paren {\frac 1 {\sqrt {x^2 - a^2} } } \rd x + C\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcosh \frac x a - \frac 1 2 \int \frac {x^2 \rd x} {\sqrt {x^2 - a^2} } + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {x^2} 2 \arcosh \frac x a - \frac 1 2 \paren {\frac {x \sqrt {x^2 - a^2} } 2 + \frac {a^2} 2 \arcosh \frac x a} + C\) Primitive of $\dfrac {x^2} {\sqrt {x^2 - a^2} }$
\(\ds \) \(=\) \(\ds \paren {\frac {x^2} 2 - \frac {a^2} 4} \arcosh \frac x a - \frac {x \sqrt {x^2 - a^2} } 4 + C\) simplifying

$\blacksquare$


Also see


Sources