Primitive of x by Logarithm of x squared plus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x \map \ln {x^2 + a^2} \rd x = \frac {\paren {x^2 + a^2} \map \ln {x^2 + a^2} - x^2} 2 + C$


Proof 1

\(\ds \int x \map \ln {x^2 + a^2} \rd x\) \(=\) \(\ds \frac {x^2 \map \ln {x^2 + a^2} } 2 - \int \frac {x^3} {x^2 + a^2} \rd x + C\) Primitive of $x^m \map \ln {x^2 + a^2}$ with $m = 1$
\(\ds \) \(=\) \(\ds \frac {x^2 \map \ln {x^2 + a^2} } 2 - \paren {\frac {x^2} 2 - \frac {a^2} 2 \map \ln {x^2 + a^2} } + C\) Primitive of $\dfrac {x^3} {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \frac {\paren {x^2 + a^2} \map \ln {x^2 + a^2} - x^2} 2 + C\) simplifying

$\blacksquare$


Proof 2

Let $u := x^2 + a^2$.

Then:

\(\ds \dfrac {\d u} {\d x}\) \(=\) \(\ds 2 x\)
\(\ds \leadsto \ \ \) \(\ds \int x \map \ln {x^2 + a^2} \rd x\) \(=\) \(\ds \int \dfrac 1 2 \dfrac {\d u} {\d x} \ln u \rd x\) Integration by Substitution
\(\ds \) \(=\) \(\ds \dfrac 1 2 \int \ln u \rd u\) simplifying
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {u \ln u - u + C}\) Primitive of $\ln u$
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\paren {x^2 + a^2} \map \ln {x^2 + a^2} - x^2 + a^2} + C\) substituting back
\(\ds \) \(=\) \(\ds \dfrac {\paren {x^2 + a^2} \map \ln {x^2 + a^2} - x^2} 2 + C\) subsuming $\dfrac {a^2} 2$ into the arbitrary constant and simplifying

$\blacksquare$