Primitive of x by Root of a x squared plus b x plus c/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $x \sqrt {a x^2 + b x + c}$

Let $a \in \R_{\ne 0}$.

Then:

$\ds \int x \sqrt {a x^2 + b x + c} \rd x = \frac {\paren {\sqrt {a x^2 + b x + c} }^3} {3 a} - \frac b {2 a} \int \sqrt {a x^2 + b x + c} \rd x$


Proof

\(\ds \) \(\) \(\ds \int x \sqrt {a x^2 + b x + c} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {2 a x \sqrt {a x^2 + b x + c} \rd x} {2 a}\) multiplying top and bottom by $2 a$
\(\ds \) \(=\) \(\ds \int \frac {\paren {2 a x + b - b} \sqrt {a x^2 + b x + c} \rd x} {2 a}\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac 1 {2 a} \int \paren {2 a x + b} \sqrt {a x^2 + b x + c} \rd x - \frac b {2 a} \int \sqrt {a x^2 + b x + c} \rd x\) Linear Combination of Primitives


Let:

\(\ds z\) \(=\) \(\ds a x^2 + b x + c\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds 2 a x + b\) Derivative of Power
\(\ds \leadsto \ \ \) \(\ds \int \paren {2 a x + b} \sqrt {a x^2 + b x + c} \rd x\) \(=\) \(\ds \int \sqrt z \rd z\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac {2 \paren {\sqrt z}^3} 3\) Primitive of Power
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds \frac {2 \paren {\sqrt {a x^2 + b x + c} }^3} 3\) substituting for $z$


So:

\(\ds \) \(\) \(\ds \int x \sqrt {a x^2 + b x + c} \rd x\)
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \int \paren {2 a x + b} \sqrt {a x^2 + b x + c} \rd x - \frac b {2 a} \int \sqrt {a x^2 + b x + c} \rd x\) from $(1)$
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \paren {\frac {2 \paren {\sqrt {a x^2 + b x + c} }^3} 3} - \frac b {2 a} \int \sqrt {a x^2 + b x + c} \rd x\) from $(2)$
\(\ds \) \(=\) \(\ds \frac {\paren {\sqrt {a x^2 + b x + c} }^3} {3 a} - \frac b {2 a} \int \sqrt {a x^2 + b x + c} \rd x\) simplifying

$\blacksquare$