Primitive of x by Sine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int x \sin a x \rd x = \frac {\sin a x} {a^2} - \frac {x \cos a x} a + C$
where $C$ is an arbitrary constant.
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds 1\) | Derivative of Identity Function |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \sin a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds -\frac {\cos a x} a\) | Primitive of $\sin a x$ |
Then:
\(\ds \int x \map \sin {a x} \rd x\) | \(=\) | \(\ds x \paren {-\frac {\cos a x} a} - \int \paren {-\frac {\cos a x} a} \times 1 \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {x \cos a x} a + \frac 1 a \int \cos a x \rd x + C\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {x \cos a x} a + \frac 1 a \paren {\frac {\sin a x} a} + C\) | Primitive of $\cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin a x} {a^2} - \frac {x \cos a x} a + C\) | simplification |
$\blacksquare$
Also see
- Primitive of $x \cos a x$
- Primitive of $x \tan a x$
- Primitive of $x \cot a x$
- Primitive of $x \sec a x$
- Primitive of $x \csc a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sin a x$: $14.340$