Primitive of x over x cubed plus a cubed squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x \rd x} {\paren {x^3 + a^3}^2} = \frac {x^2} {3 a^3 \paren {x^3 + a^3} } + \frac 1 {18 a^4} \map \ln {\frac {x^2 - a x + a^2} {\paren {x + a}^2} } + \frac 1 {3 a^4 \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}$


Proof

First a lemma:

Lemma

$\ds \int \frac {x \rd x} {\paren {x^3 + a^3}^2} = \frac {x^2} {3 a^3 \paren {x^3 + a^3} } + \frac 1 {3 a^3} \int \frac {x \rd x} {\paren {x^3 + a^3} }$

$\Box$


Then:

\(\ds \int \frac {x \rd x} {\paren {x^3 + a^3}^2}\) \(=\) \(\ds \frac {x^2} {3 a^3 \paren {x^3 + a^3} } + \frac 1 {3 a^3} \int \frac {x \rd x} {\paren {x^3 + a^3} }\) from Lemma
\(\ds \) \(=\) \(\ds \frac {x^2} {3 a^3 \paren {x^3 + a^3} } + \frac 1 {3 a^3} \paren {\frac 1 {6 a} \map \ln {\frac {x^2 - a x + a^2} {\paren {x + a}^2} } + \frac 1 {a \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3} }\) Primitive of $\dfrac x {\paren {x^3 + a^3} }$
\(\ds \) \(=\) \(\ds \frac {x^2} {3 a^3 \paren {x^3 + a^3} } + \frac 1 {18 a^4} \map \ln {\frac {x^2 - a x + a^2} {\paren {x + a}^2} } + \frac 1 {3 a^4 \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}\) simplifying

$\blacksquare$


Sources