Principle of Composition/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\paren {\paren {p \implies r} \lor \paren {q \implies r} } \iff \paren {\paren {p \land q} \implies r}$


Proof

By the tableau method of natural deduction:

$\paren {\paren {p \implies r} \lor \paren {q \implies r} } \iff \paren {\paren {p \land q} \implies r} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \implies r} \lor \paren {q \implies r}$ Assumption (None)
2 1 $\paren {p \land q} \implies r$ Sequent Introduction 1 Principle of Composition: Formulation 1
3 $\paren {\paren {p \implies r} \lor \paren {q \implies r} } \implies \paren {\paren {p \land q} \implies r}$ Rule of Implication: $\implies \II$ 1 – 2 Assumption 1 has been discharged
4 4 $\paren {p \implies r} \lor \paren {q \implies r}$ Assumption (None)
5 4 $\paren {p \land q} \implies r$ Sequent Introduction 4 Principle of Composition: Formulation 1
6 $\paren {\paren {p \land q} \implies r} \implies \paren {\paren {p \implies r} \lor \paren {q \implies r} }$ Rule of Implication: $\implies \II$ 4 – 5 Assumption 4 has been discharged
7 $\paren {\paren {p \implies r} \lor \paren {q \implies r} } \iff \paren {\paren {p \land q} \implies r}$ Biconditional Introduction: $\iff \II$ 3, 6

$\blacksquare$


Sources