Principle of Recursive Definition/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\N$ be the natural numbers.

Let $T$ be a class (which may be a set).

Let $a \in T$.

Let $g: T \to T$ be a mapping.


Then there exists exactly one mapping $f: \N \to T$ such that:

$\forall x \in \N: \map f x = \begin{cases} a & : x = 0 \\ \map g {\map f n} & : x = n + 1 \end{cases}$


Proof

Recall the general result:

Let $p \in \N$.

Let $p^\ge$ be the upper closure of $p$ in $\N$:

$p^\ge := \set {x \in \N: x \ge p} = \set {p, p + 1, p + 2, \ldots}$


Then there exists exactly one mapping $f: p^\ge \to T$ such that:

$\forall x \in p^\ge: \map f x = \begin{cases} a & : x = p \\ \map g {\map f n} & : x = n + 1 \end{cases}$


The result follows from setting $p = 0$.

$\blacksquare$