Product Inverse Operation Properties/Lemma 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \oplus}$ be a closed algebraic structure on which the following properties hold:

\((\text {PI} 1)\)   $:$   Self-Inverse Property      \(\ds \forall x \in G:\) \(\ds x \oplus x = e \)      
\((\text {PI} 2)\)   $:$   Right Identity      \(\ds \exists e \in G: \forall x \in G:\) \(\ds x \oplus e = x \)      
\((\text {PI} 3)\)   $:$   Product Inverse with Right Identity      \(\ds \forall x, y \in G:\) \(\ds e \oplus \paren {x \oplus y} = y \oplus x \)      
\((\text {PI} 4)\)   $:$   Cancellation Property      \(\ds \forall x, y, z \in G:\) \(\ds \paren {x \oplus z} \oplus \paren {y \oplus z} = x \oplus y \)      

These four stipulations are known as the product inverse operation axioms.


Let $\circ$ be the operation on $G$ defined as:

$\forall x, y \in G: x \circ y = x \oplus \paren {e \oplus y}$


Then:

$\forall x, y, z \in G: x \oplus z = y \oplus z \implies x = y$


Proof

Let $x \oplus z = y \oplus z$.

Then we have:

\(\ds \forall x, y, z \in G: \, \) \(\ds \paren {x \oplus z} \oplus \paren {y \oplus z}\) \(=\) \(\ds \paren {x \oplus z} \oplus \paren {x \oplus z}\) from $x \oplus z = y \oplus z$
\(\ds \) \(=\) \(\ds x \oplus x\) $\text {PI} 4$: Cancellation Property
\(\ds \) \(=\) \(\ds e\) $\text {PI} 1$: Self-Inverse Property

Then:

\(\ds \forall x, y, z \in G: \, \) \(\ds \paren {x \oplus z} \oplus \paren {y \oplus z}\) \(=\) \(\ds x \oplus y\) $\text {PI} 4$: Cancellation Property

Thus we have:

$x \oplus y = e$

as both are equal to $\paren {x \oplus z} \oplus \paren {y \oplus z}$.


Then from Lemma $3$:

$x = y$

Hence the result.

$\blacksquare$


Sources