Product of Change of Basis Matrices

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a ring with unity.

Let $M$ be a free $R$-module of finite dimension $n>0$.

Let $\AA$, $\BB$ and $\CC$ be ordered bases of $M$.

Let $\mathbf M_{\AA, \BB}$, $\mathbf M_{\BB, \CC}$ and $\mathbf M_{\AA, \CC}$ be the change of basis matrices from $\AA$ to $\BB$, $\BB$ to $\CC$ and $\AA$ to $\CC$ respectively.


Then:

$\mathbf M_{\AA, \CC} = \mathbf M_{\AA, \BB} \cdot \mathbf M_{\BB, \CC}$


Proof

Let $m \in M$.

Let $\sqbrk m_\AA$ be its coordinate vector relative to $\AA$, and similarly for $\BB$ and $\CC$.


On the one hand:

\(\ds \sqbrk m_\AA\) \(=\) \(\ds \mathbf M_{\AA, \CC} \cdot \sqbrk m_\CC\) Change of Coordinate Vector Under Change of Basis


On the other hand:

\(\ds \sqbrk m_AA\) \(=\) \(\ds \mathbf M_{\AA, \BB} \cdot \sqbrk m_\BB\) Change of Coordinate Vector Under Change of Basis
\(\ds \) \(=\) \(\ds \mathbf M_{\AA, \BB} \cdot \mathbf M_{\BB, \CC} \cdot \sqbrk m_\CC\) Change of Coordinate Vector Under Change of Basis


Thus:

$\forall m \in M: \paren {\mathbf M_{\AA, \CC} - \mathbf M_{\AA, \BB} \cdot \mathbf M_{\BB, \CC} } \cdot \sqbrk m_\CC = 0$

Because $m$ is arbitrary, the result follows.



$\blacksquare$


Also see