Product of Complex Number with Conjugate by Dot and Cross Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1$ and $z_2$ be complex numbers.


Then:

$\overline {z_1} z_2 = \paren {z_1 \circ z_2} + i \paren {z_1 \times z_2}$

where:

$\overline {z_1}$ denotes the complex conjugate of $z_1$
$z_1 \circ z_2$ denotes the complex dot product of $z_1$ with $z_2$
$z_1 \times z_2$ denotes the complex cross product of $z_1$ with $z_2$.


Proof

\(\ds \) \(\) \(\ds \paren {z_1 \circ z_2} + i \paren {z_1 \times z_2}\)
\(\ds \) \(=\) \(\ds \paren {z_1 \circ z_2} + i \frac {\overline {z_1} z_2 - z_1 \overline {z_2} } {2 i}\) Definition 4 of Vector Cross Product
\(\ds \) \(=\) \(\ds \frac {\overline {z_1} z_2 + z_1 \overline {z_2} } 2 + \frac {\overline {z_1} z_2 - z_1 \overline {z_2} } 2\) Definition 4 of Dot Product
\(\ds \) \(=\) \(\ds \frac {\overline {z_1} z_2 + z_1 \overline {z_2} + \overline {z_1} z_2 - z_1 \overline {z_2} } 2\)
\(\ds \) \(=\) \(\ds \overline {z_1} z_2\)

$\blacksquare$


Sources