Product of Complex Number with Conjugate in Exponential Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1$ and $z_2$ be complex numbers.


Then:

$\overline {z_1} z_2 = \cmod {z_1} \, \cmod {z_2} e^{i \theta}$

where:

$\overline {z_1}$ denotes the complex conjugate of $z_1$
$\cmod {z_1}$ denotes the complex modulus of $z_1$
$\theta$ denotes the angle from $z_1$ to $z_2$, measured in the positive direction.


Proof

\(\ds \overline {z_1} z_2\) \(=\) \(\ds \paren {z_1 \circ z_2} + i \paren {z_1 \times z_2}\) Product of Complex Number with Conjugate by Dot and Cross Product
\(\ds \) \(=\) \(\ds \cmod {z_1} \, \cmod {z_2} \cos \theta + i \paren {z_1 \times z_2}\) Definition 2 of Dot Product
\(\ds \) \(=\) \(\ds \cmod {z_1} \, \cmod {z_2} \cos \theta + i \cmod {z_1} \, \cmod {z_2} \sin \theta\) Definition 2 of Vector Cross Product
\(\ds \) \(=\) \(\ds \cmod {z_1} \, \cmod {z_2} \paren {\cos \theta + i \sin \theta}\)
\(\ds \) \(=\) \(\ds \cmod {z_1} \, \cmod {z_2} e^{i \theta}\) Euler's Formula

$\blacksquare$


Sources