Product of Complex Numbers in Polar Form
Jump to navigation
Jump to search
Theorem
Let $z_1 := \polar {r_1, \theta_1}$ and $z_2 := \polar {r_2, \theta_2}$ be complex numbers expressed in polar form.
Then:
- $z_1 z_2 = r_1 r_2 \paren {\map \cos {\theta_1 + \theta_2} + i \map \sin {\theta_1 + \theta_2} }$
General Result
Let $z_1, z_2, \ldots, z_n \in \C$ be complex numbers.
Let $z_j = \polar {r_j, \theta_j}$ be $z_j$ expressed in polar form for each $j \in \set {1, 2, \ldots, n}$.
Then:
- $z_1 z_2 \cdots z_n = r_1 r_2 \cdots r_n \paren {\map \cos {\theta_1 + \theta_2 + \cdots + \theta_n} + i \map \sin {\theta_1 + \theta_2 + \cdots + \theta_n} }$
Proof
\(\ds z_1 z_2\) | \(=\) | \(\ds r_1 \paren {\cos \theta_1 + i \sin \theta_1} r_2 \paren {\cos \theta_2 + i \sin \theta_2}\) | Definition of Polar Form of Complex Number | |||||||||||
\(\ds \) | \(=\) | \(\ds r_1 r_2 \paren {\paren {\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2} + i \paren {\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2} }\) | Definition of Complex Multiplication | |||||||||||
\(\ds \) | \(=\) | \(\ds r_1 r_2 \paren {\map \cos {\theta_1 + \theta_2} + i \paren {\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2} }\) | Cosine of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds r_1 r_2 \paren {\map \cos {\theta_1 + \theta_2} + i \map \sin {\theta_1 + \theta_2} }\) | Sine of Sum |
$\blacksquare$
Examples
Example: $3 \cis 40 \degrees \times 4 \cis 80 \degrees$
- $3 \cis 40 \degrees \times 4 \cis 80 \degrees = -6 + 6 \sqrt 3 i$
Example: $5 \cis 20 \degrees \times 3 \cis 40 \degrees$
- $5 \cis 20 \degrees \times 3 \cis 40 \degrees = \dfrac {15} 2 + \dfrac {15 \sqrt 3} 2 i$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text I$: Algebraic Structures: $\S 1$: The Language of Set Theory
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $6.7$: Multiplication and Division of Complex Numbers in Polar Form
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: De Moivre's Theorem
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Solved Problems: De Moivre's Theorem: $19 \ \text{(a)}$