Product of Exponential Generating Functions

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map G z$ be the exponential generating function for the sequence $\sequence {\dfrac {a_n} {n!} }$.

Let $\map H z$ be the exponential generating function for the sequence $\sequence {\dfrac {b_n} {n!} }$.


Then $\map G z \map H z$ is the generating function for the sequence $\sequence {\dfrac {c_n} {n!} }$, where:

$\forall n \in \Z_{\ge 0}: c_n = \ds \sum_{k \mathop \in \Z} \dbinom n k a_k b_{n - k}$


Proof

Let $\map G z \map H z$ be the generating function for the sequence $\sequence {c'_n}$.


By definition of generating function:

\(\ds \map G z \map H z\) \(=\) \(\ds \sum_{k \mathop \ge 0} \dfrac {a_k} {k!} z^k \sum_{k \mathop \ge 0} \dfrac {b_k} {k!} z^k\)
\(\ds \) \(=\) \(\ds \paren {\dfrac {a_0} {0!} + \dfrac {a_1} {1!} z + \dfrac {a_2} {2!} z^2 + \cdots} \paren {\dfrac {b_0} {0!} + \dfrac {b_1} {1!} z + \dfrac {b_2} {2!} z^2 + \cdots}\)


Then:

\(\ds c'_n\) \(=\) \(\ds \sum_{k \mathop = 0}^n \dfrac {a_k} {k!} \dfrac {b_{n - k} } {\paren {n - k}!}\) Product of Generating Functions
\(\ds \) \(=\) \(\ds \dfrac 1 {n!} \paren {\sum_{k \mathop = 0}^n \dfrac {n!} {k! \paren {n - k}!} a_k b_{n - k} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 {n!} \paren {\sum_{k \mathop = 0}^n \dbinom n k a_k b_{n - k} }\) Definition 1 of Binomial Coefficient/Integers
\(\ds \) \(=\) \(\ds \dfrac {c_n} {n!}\) where $c_n = \ds \sum_{k \mathop = 0}^n \dbinom n k a_k b_{n - k}$

Hence the result.

$\blacksquare$


Sources