Product of Integers of form 4n + 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z$ such that both $m$ and $n$ are of the form $4 k + 1$ where $k \in \Z$.

Then $m n$ is also of the form $4 k + 1$.


Proof

Let $m = 4 k_1 + 1, n = 4 k_2 + 1$.

Then:

\(\ds m n\) \(=\) \(\ds \paren {4 k_1 + 1} \paren {4 k_2 + 1}\)
\(\ds \) \(=\) \(\ds 4 k_1 \cdot 4 k_2 + 4 k_1 + 4 k_2 + 1\) Integer Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds \paren {4 k_1 \cdot 4 k_2 + 4 k_1 + 4 k_2} + 1\) Integer Addition is Associative
\(\ds \) \(=\) \(\ds 4 \paren {k_1 \cdot 4 k_2 + k_1 + k_2} + 1\) Integer Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds 4 \paren {4 k_1 k_2 + k_1 + k_2} + 1\) Integer Multiplication is Commutative
\(\ds \) \(=\) \(\ds 4 k + 1\) where $k = 4 k_1 k_2 + k_1 + k_2 \in \Z$

$\blacksquare$


Sources