Product of Smooth Function and Dirac Delta Distribution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R^d$ be a vector in real Euclidean space.

Let $\delta_a \in \map {\DD'} {\R^d}$ be the Dirac delta distribution.

Let $\alpha \in \map {C^\infty} {\R^d}$ be a smooth real function.


Then in the distributional sense we have that:

$\alpha \delta_a = \map \alpha a \delta_a$


Proof

Let $\phi \in \map \DD {\R^d}$ be a test function.

Then:

\(\ds \map {\alpha \delta_a} \phi\) \(=\) \(\ds \map {\delta_a} {\alpha \phi}\) Definition of Multiplication of Distribution by Smooth Function
\(\ds \) \(=\) \(\ds \map {\paren {\alpha \phi} } a\) Definition of Dirac Delta Distribution
\(\ds \) \(=\) \(\ds \map \alpha a \map \phi a\) Definition of Pointwise Multiplication of Real-Valued Functions
\(\ds \) \(=\) \(\ds \map \alpha a \map {\delta_a} \phi\) Definition of Dirac Delta Distribution

$\blacksquare$


Sources