Product of Two Triangular Numbers to make Square

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T_n$ be a triangular number.

Then there is an infinite number of $m \in \Z_{>0}$ such that $T_n \times T_m$ is a square number.


Proof

Since $n^2 < n \paren {n + 1} < \paren {n + 1}^2$, $n \paren {n + 1}$ cannot be a square number.

Thus there are infinitely many distinct integer solutions to the Pell's Equation:

$x^2 - n \paren {n + 1} y^2 = 1$

and for each solution:

\(\ds T_n T_{x^2 - 1}\) \(=\) \(\ds \frac {n \paren {n + 1} } 2 \times \frac {x^2 \paren {x^2 - 1} } 2\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} } 2 \times \frac {x^2 n \paren {n + 1} y^2 } 2\)
\(\ds \) \(=\) \(\ds \paren {\frac {x y n \paren {n + 1} } 2}^2\)

Hence the result.

$\blacksquare$


Examples

$T_2 \times T_{24}$

$T_2 \times T_{24} = 30^2$


$T_3 \times T_{48}$

$T_3 \times T_{48} = 84^2$


Sources