Properties of 12,345,679

From ProofWiki
Jump to navigation Jump to search

Theorem

$12 \, 345 \, 679$ has the following properties:


\(\ds 12 \, 345 \, 679 \times 1\) \(=\) \(\ds 12 \, 345 \, 679\) digit $8$ is missing
\(\ds 12 \, 345 \, 679 \times 2\) \(=\) \(\ds 24 \, 691 \, 358\) digit $7$ is missing
\(\ds 12 \, 345 \, 679 \times 3\) \(=\) \(\ds 37 \, 037 \, 037\)
\(\ds 12 \, 345 \, 679 \times 4\) \(=\) \(\ds 49 \, 382 \, 716\) digit $5$ is missing
\(\ds 12 \, 345 \, 679 \times 5\) \(=\) \(\ds 61 \, 728 \, 395\) digit $4$ is missing
\(\ds 12 \, 345 \, 679 \times 6\) \(=\) \(\ds 74 \, 074 \, 074\)
\(\ds 12 \, 345 \, 679 \times 7\) \(=\) \(\ds 86 \, 419 \, 753\) digit $2$ is missing
\(\ds 12 \, 345 \, 679 \times 8\) \(=\) \(\ds 98 \, 765 \, 432\) digit $1$ is missing
\(\ds 12 \, 345 \, 679 \times 9\) \(=\) \(\ds 111 \, 111 \, 111\)

In each product, the sequence $1$ to $9$, with the one given digit missing, can be read in order by cycling round it, skipping a fixed number of digits (counting an extra one when going from start to end), for example:

$2 \ (4691) \ 3 \ (58?2) \ 4 \ (6913) \ 5 \ (8?24) \ 6 \ (9135) \ 8 (?246) \ 9$




Also see


Sources