Properties of Affine Spaces

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\EE$ be an affine space with difference space $V$.

Let $0$ denote the zero element of $V$.

Then the following hold for all $p,q,r \in \EE$ and all $u, v \in V$:

$(1): \quad p - p = 0$
$(2): \quad p + 0 = p$
$(3): \quad p + u = p + v \iff u = v$
$(4): \quad q - p = r - p \iff q = r$


Proof

$(1): \quad p - p = 0$

We have:

\(\ds \paren {p - p} + \paren {q - p}\) \(=\) \(\ds \paren {p + \paren {q - p} } - p\)
\(\ds \) \(=\) \(\ds q - p\)

From Zero Element is Unique:

$p - p = 0$

$\Box$


$(2): \quad p + 0 = p$

Using $(1)$ we see that:

\(\ds p + 0\) \(=\) \(\ds p + \paren {p - p}\)
\(\ds \) \(=\) \(\ds p\)

$\Box$


$(3): \quad p + u = p + v \iff u = v$

Let $u = v$.

By definition a mapping has a unique image point on a given element.

It follows that:

$p + u = p + v$

Let $p + u = p + v$.

We have:

\(\ds p + u\) \(=\) \(\ds p + v\)
\(\ds \leadsto \ \ \) \(\ds \paren {p + u} - p\) \(=\) \(\ds \paren {p + v} - p\)
\(\ds \leadsto \ \ \) \(\ds \paren {p - p} + u\) \(=\) \(\ds \paren {p - p} + v\)
\(\ds \leadsto \ \ \) \(\ds u\) \(=\) \(\ds v\) by $(1)$

$\Box$


$(4): \quad q - p = r - p \iff q = r$

Let $q = r$.

By definition a mapping has a unique image point on a given element.

It follows that:

$q - p = r - p$

Let $q - p = r - p \in V$.

Then:

\(\ds q - p\) \(=\) \(\ds r - p\)
\(\ds \leadsto \ \ \) \(\ds p + \paren {q - p}\) \(=\) \(\ds p + \paren {r - p}\)
\(\ds \leadsto \ \ \) \(\ds q\) \(=\) \(\ds r\) by hypothesis $q - p = r - p$

$\blacksquare$