Properties of Norm on Division Ring/Norm of Inverse

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +, \circ}$ be a division ring with zero $0_R$ and unity $1_R$.

Let $\norm {\, \cdot \,}$ be a norm on $R$.

Let $x \in R$


Then:

$x \ne 0_R \implies \norm {x^{-1} } = \dfrac 1 {\norm x}$


Proof

Let $x \ne 0_R$.

By Norm Axiom $\text N 1$: Positive Definiteness:

$\norm x \ne 0$

So:

\(\ds \norm x \norm {x^{-1} }\) \(=\) \(\ds \norm {x \circ x^{-1} }\) Norm Axiom $\text N 2$: Multiplicativity
\(\ds \) \(=\) \(\ds \norm {1_R}\) Definition of Product Inverse
\(\ds \) \(=\) \(\ds 1\) Norm of Unity of Division Ring
\(\ds \leadsto \ \ \) \(\ds \norm {x^{-1} }\) \(=\) \(\ds \dfrac 1 {\norm x}\)

$\blacksquare$


Sources