Propositional Tautology is Tautology in Predicate Logic

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\LL_1$ be the language of predicate logic.

Let $\LL_0$ be the language of propositional logic.

Let the basic WFFs of $\LL_1$ be the vocabulary of $\LL_0$.


Let $\mathbf A$ be a $\mathrm{BI}$-tautology of $\LL_0$, by considering the basic subformulas of $\mathbf A$ as part of the vocabulary of $\LL_0$.

Then $\mathbf A$ is a $\mathrm{PL_A}$-tautology of $\LL_1$.


Proof

We proceed by the Principle of Structural Induction on the bottom-up specification of $\LL_1$, applied to $\mathbf A$.

Define $\map {v_F} {\mathbf A} = F$ for all basic WFFs $\mathbf A$ as a boolean interpretation for $\LL_0$.


Consider the case $\mathbf A$ is formed by either $\paren{ \mathbf W ~ \PP_n }$ or $\paren{ \mathbf W ~ \forall\exists }$.

Then $\mathbf A$ is basic, and therefore:

$\map {v_F} {\mathbf A} = F$

meaning that $\mathbf A$ is not a $\mathrm{BI}$-tautology.


Consider next the case $\mathbf A$ is formed by either $\paren{ \mathbf W ~ \neg }$ or $\paren{ \mathbf W ~ \lor, \land, \Rightarrow, \Leftrightarrow }$.

That is, $\mathbf A = \neg \mathbf B$ or $\mathbf A = \mathbf B \circ \mathbf B'$ for $\circ$ being one of $\lor, \land, \Rightarrow, \Leftrightarrow$.

Suppose $\mathbf A$ is not a $\mathrm{PL_A}$-tautology.

Then there are a structure $\AA$ and an assignment $\sigma$ such that:

$\AA, \sigma \not\models \mathbf A$

Then define the boolean interpretation $v_{\AA, \sigma}$ on basic WFFs $\mathbf B$ by:

$\map {v_{\AA, \sigma} } {\mathbf B} = T$ if and only if $\AA, \sigma \models \mathbf B$

which is to say:

$\map {v_{\AA, \sigma} } {\mathbf B} = \map {\operatorname{val}_\AA} {\mathbf B} \sqbrk \sigma$

where $\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk \sigma$ is the value of $\mathbf A$ in $\AA$ under $\sigma$.


Hence, by definition of boolean interpretation:

\(\ds \map {v_{\AA, \sigma} } {\neg \mathbf B}\) \(=\) \(\ds T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \map {v_{\AA, \sigma} } {\mathbf B}\) \(=\) \(\ds F\)
\(\ds \leadstoandfrom \ \ \) \(\ds \AA, \sigma\) \(\not\models\) \(\ds \mathbf B\)
\(\ds \leadstoandfrom \ \ \) \(\ds \AA, \sigma\) \(\models\) \(\ds \neg \mathbf B\)

And similarly, for $\circ$ being one of $\lor, \land, \Rightarrow, \Leftrightarrow$:

\(\ds \map {v_{\AA, \sigma} } {\mathbf B \circ \mathbf B'}\) \(=\) \(\ds T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \map {f^\circ} {\map {v_{\AA, \sigma} } {\mathbf B}, \map {v_{\AA, \sigma} } {\mathbf B'} }\) \(=\) \(\ds T\) Definition of Boolean Interpretation
\(\ds \leadstoandfrom \ \ \) \(\ds \map {f^\circ} {\map {\operatorname{val}_\AA} {\mathbf B} \sqbrk \sigma, \map {\operatorname{val}_\AA} {\mathbf B'} \sqbrk \sigma }\) \(=\) \(\ds T\) Definition of $v_{\AA, \sigma}$
\(\ds \leadstoandfrom \ \ \) \(\ds \map {\operatorname{val}_\AA} {\mathbf B \circ \mathbf B'} \sqbrk \sigma\) \(=\) \(\ds T\) Definition of Value of Formula under Assignment
\(\ds \leadstoandfrom \ \ \) \(\ds \AA, \sigma\) \(\models\) \(\ds \mathbf B \circ \mathbf B'\)

Since by hypothesis $\AA, \sigma \not\models \mathbf A$, it follows that:

$\map {v_{\AA, \sigma} } {\mathbf A} = F$

and $\mathbf A$ is not a $\mathrm{BI}$-tautology.

The induction case for $\paren{ \mathbf W ~ \neg }$ and $\paren{ \mathbf W ~ \lor, \land, \Rightarrow, \Leftrightarrow }$ follows by transposition.


Hence the result by the Principle of Structural Induction.

$\blacksquare$


Sources