Quadrilateral in Complex Plane is Cyclic iff Cross Ratio of Vertices is Real

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1, z_2, z_3, z_4$ be distinct complex numbers.

Then:

$z_1, z_2, z_3, z_4$ define the vertices of a cyclic quadrilateral

if and only if their cross-ratio:

$\paren {z_1, z_3; z_2, z_4} = \dfrac {\paren {z_1 - z_2} \paren {z_3 - z_4} } {\paren {z_1 - z_4} \paren {z_3 - z_2} }$

is wholly real.


Proof

Let $z_1 z_2 z_3 z_4$ be a cyclic quadrilateral.

By Geometrical Interpretation of Complex Subtraction, the four sides of $z_1 z_2 z_3 z_4$ can be defined as $z_1 - z_2$, $z_3 - z_2$, $z_3 - z_4$ and $z_1 - z_4$.


Cyclic-Quadrilateral-in-Complex-Plane.png


From Opposite Angles of Cyclic Quadrilateral sum to Two Right Angles, the opposite angles of $z_1 z_2 z_3 z_4$ sum to $\pi$ radians.

By Complex Multiplication as Geometrical Transformation, it follows that:

\(\ds \angle \, z_1\) \(=\) \(\ds \map \arg {\dfrac {z_1 - z_2} {z_1 - z_4} }\)
\(\ds \angle \, z_2\) \(=\) \(\ds \map \arg {\dfrac {z_3 - z_2} {z_1 - z_2} }\)
\(\ds \angle \, z_3\) \(=\) \(\ds \map \arg {\dfrac {z_3 - z_4} {z_3 - z_2} }\)
\(\ds \angle \, z_4\) \(=\) \(\ds \map \arg {\dfrac {z_1 - z_4} {z_3 - z_4} }\)


Thus:

\(\ds \angle \, z_1 + \angle \, z_3\) \(=\) \(\ds \pi\)
\(\ds \leadsto \ \ \) \(\ds \map \arg {\dfrac {z_1 - z_2} {z_1 - z_4} } + \arg \paren {\dfrac {z_3 - z_4} {z_3 - z_2} }\) \(=\) \(\ds \pi\)
\(\ds \leadsto \ \ \) \(\ds \map \arg {\paren {\dfrac {z_1 - z_2} {z_1 - z_4} } \paren {\dfrac {z_3 - z_4} {z_3 - z_2} } }\) \(=\) \(\ds \pi\) Argument of Product equals Sum of Arguments
\(\ds \leadsto \ \ \) \(\ds \map \Im {\dfrac {\paren {z_1 - z_2} \paren {z_3 - z_4} } {\paren {z_1 - z_4} \paren {z_3 - z_2} } }\) \(=\) \(\ds 0\) Argument of Negative Real Number is Pi

Hence the result.

$\blacksquare$


Sources