Quotient Structure is Similar to Structure

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a congruence relation on a algebraic structure $\struct {G, \circ}$.



Then the quotient structure $\struct {G / \RR, \circ_\RR}$ is a similar structure to $\struct {G, \circ}$.


Proof

Quotient Structure of Semigroup is Semigroup

From Quotient Structure is Well-Defined we have that $\circ_\RR$ is closed on $S / \RR$.

Let $\eqclass x \RR, \eqclass y \RR, \eqclass z \RR \in S / \RR$.

We shall prove that $\circ_\RR$ is associative:

\(\ds \paren {\eqclass x \RR \circ_{S / \RR} \eqclass y \RR} \circ_{S / \RR} \eqclass z \RR\) \(=\) \(\ds \eqclass {x \circ y} \RR \circ_{S / \RR} \eqclass z \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass {\paren {x \circ y} \circ z} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass {x \circ \paren {y \circ z} } \RR\) Semigroup Axiom $\text S 1$: Associativity
\(\ds \) \(=\) \(\ds \eqclass x \RR \circ_{S / \RR} \eqclass {y \circ z} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass x \RR \circ_{S / \RR} \paren {\eqclass y \RR \circ_{S / \RR} \eqclass z \RR}\) Definition of Operation Induced on $S / \RR$ by $\circ$

Hence $\struct {S / \RR, \circ_\RR}$ is a semigroup.


$\blacksquare$


Quotient Structure of Monoid is Monoid

From Quotient Structure of Semigroup is Semigroup $\struct {S / \RR, \circ_\RR}$ is a semigroup.

Let $\eqclass x {\RR} \in S / \RR$.

Consider $\eqclass e \RR$:

\(\ds \eqclass x \RR \circ_{S / \RR} \eqclass e \RR\) \(=\) \(\ds \eqclass {x \circ e} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass x \RR\) Definition of Identity Element

Furthermore:

\(\ds \eqclass e \RR \circ_{S / \RR} \eqclass x \RR\) \(=\) \(\ds \eqclass {e \circ x} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass x \RR\) Definition of Identity Element

Hence $\eqclass e \RR$ is an identity.


Hence $\struct {S / \RR, \circ_\RR}$ is a monoid.

$\blacksquare$


Quotient Structure of Group is Group

From Quotient Structure of Monoid is Monoid $\struct {G / \RR, \circ_\RR}$ is a monoid with $\eqclass e \RR$ as its identity.

Let $\eqclass x \RR \in S / \RR$.


Consider $\eqclass {-x} \RR$ where $-x$ denotes the inverse of $x$ under $\circ$.


\(\ds \eqclass x \RR \circ_{S / \RR} \eqclass {-x} \RR\) \(=\) \(\ds \eqclass {x \circ -x} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass e \RR\) Definition of Inverse Element

Furthermore:

\(\ds \eqclass {-x} \RR \circ_{S / \RR} \eqclass x \RR\) \(=\) \(\ds \eqclass {-x \circ x} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass e \RR\) Definition of Inverse Element

Hence $\eqclass {-x} \RR$ is the inverse of $\eqclass x \RR$.


Hence $\struct {G / \RR, \circ_\RR}$ is a group.

$\blacksquare$


Quotient Structure of Abelian Group is Abelian Group

From Quotient Structure of Group is Group we have that $\struct {G / \RR, \circ_\RR}$ is a group.

Let $\eqclass x \RR, \eqclass y \RR \in S / \RR$.

\(\ds \eqclass x \RR \circ_{S / \RR} \eqclass y \RR\) \(=\) \(\ds \eqclass {x \circ y} \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$
\(\ds \) \(=\) \(\ds \eqclass {y \circ x} \RR\) $\circ$ is Commutative
\(\ds \) \(=\) \(\ds \eqclass y \RR \circ_{S / \RR} \eqclass x \RR\) Definition of Operation Induced on $S / \RR$ by $\circ$

Hence $\circ_{S / \RR}$ is commutative.


Hence $\struct {G / \RR, \circ_\RR}$ is an abelian group.

$\blacksquare$