Quotient of Modulo Operation with Modulus
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Let $x \bmod y$ denote the modulo operation:
- $x \bmod y := \begin{cases} x - y \floor {\dfrac x y} & : y \ne 0 \\ x & : y = 0 \end{cases}$
where $\floor {\dfrac x y}$ denotes the floor of $\dfrac x y$.
Let $y \ne 0$.
Then:
- $0 \le \dfrac x y - \floor {\dfrac x y} = \dfrac {x \bmod y} y < 1$
Proof
From Real Number minus Floor:
- $\dfrac x y - \floor {\dfrac x y} \in \hointr 0 1$
Thus by definition of half-open real interval:
- $0 \le \dfrac x y - \floor {\dfrac x y} < 1$
Then:
\(\ds x \bmod y\) | \(=\) | \(\ds x - y \floor {\frac x y}\) | Definition of Modulo Operation | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {x \bmod y} y\) | \(=\) | \(\ds \frac {x - y \floor {\dfrac x y} } y\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x y - \frac y y \floor {\dfrac x y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac x y - \floor {\dfrac x y}\) |
Hence the result.
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.4$: Integer Functions and Elementary Number Theory: $(2)$