Ratio of Consecutive Lucas Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \N$, let $L_n$ be the $n$th Lucas number.


Then:

$\ds \lim_{n \mathop \to \infty} \frac {L_{n + 1} } {L_n} = \phi$

where $\phi = \dfrac {1 + \sqrt 5} 2$ is the golden mean.


Proof

\(\ds \lim_{n \mathop \to \infty} \frac {L_{n + 1} } {L_n}\) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac {\phi^{n + 1} + \paren {-\phi^{-1} }^{n + 1} } {\phi^n + \paren {-\phi^{-1} }^n}\) Closed Form for Lucas Numbers
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac {\phi - \phi^{-1} \paren {-\phi^{-2} }^n } {1 + \paren {-\phi^{-2} }^n}\) dividing both numerator and denominator by $\phi^n$
\(\ds \) \(=\) \(\ds \frac \phi 1\) Quotient Rule for Limits of Real Functions
\(\ds \) \(=\) \(\ds \phi\)

$\blacksquare$


Sources