Real Number Line is Locally Compact Hausdorff Space

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\R, \tau_d}$ be the real number line with the usual (Euclidean) topology.


Then $\struct {\R, \tau_d}$ is a locally compact Hausdorff space.


Proof

We have that a Real Number Line satisfies all Separation Axioms.

Specifically, $\struct {\R, \tau_d}$ is a Hausdorff space.

Consider $\CC$ the set of subsets of $\R$ defined as:

$\CC = \set {\closedint n {n + 1}: n \in \Z}$

where $\closedint n {n + 1}$ is the closed real interval between successive integers.

By the Heine-Borel Theorem, each element of $\CC$ is compact.

Every element of $\R$ is contained in at least one of the elements of $\CC$.

Hence, by definition, $\R$ is locally compact.

$\blacksquare$


Sources