Real Number to Negative Power/Positive Integer

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r \in \R_{> 0}$ be a (strictly) positive real number.

Let $n \in \Z_{\ge 0}$ be a positive integer.

Let $r^n$ be defined as $r$ to the power of $n$.


Then:

$r^{-n} = \dfrac 1 {r^n}$


Proof

Proof by induction on $m$:

For all $n \in \Z_{\ge 0}$, let $\map P n$ be the proposition:

$r^{-n} = \dfrac 1 {r^n}$


$\map P 0$ is the case:

\(\ds r^{-0}\) \(=\) \(\ds r^0\)
\(\ds \) \(=\) \(\ds 1\) Definition of Integer Power
\(\ds \) \(=\) \(\ds \dfrac 1 1\)
\(\ds \) \(=\) \(\ds \dfrac 1 {r^0}\) Definition of Integer Power


Basis for the Induction

$\map P 1$ is the case:

\(\ds r^{-1}\) \(=\) \(\ds \dfrac {r^{-1 + 1} } r\) Definition of Integer Power
\(\ds \) \(=\) \(\ds \dfrac {r^0} r\)
\(\ds \) \(=\) \(\ds \dfrac 1 r\) Definition of Integer Power
\(\ds \) \(=\) \(\ds \dfrac 1 {r^1}\) Definition of Integer Power


This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$r^{-k} = \dfrac 1 {r^k}$


Then we need to show:

$r^{-\paren {k + 1} } = \dfrac 1 {r^{k + 1} }$


Induction Step

This is our induction step:


\(\ds r^{-\paren {k + 1} }\) \(=\) \(\ds \dfrac {r^{-\paren {k + 1} + 1} } r\) Definition of Integer Power
\(\ds \) \(=\) \(\ds \dfrac {r^{-k} } r\) simplification
\(\ds \) \(=\) \(\ds \dfrac 1 {r^k \times r}\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \dfrac 1 {r^{k + 1} }\) Definition of Integer Power

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\forall n \in \Z_{\ge 0}: r^{-n} = \dfrac 1 {r^n}$

$\blacksquare$