Real Symmetric Positive Definite Matrix has Positive Eigenvalues

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a symmetric positive definite matrix over $\mathbb R$.

Let $\lambda$ be an eigenvalue of $A$.


Then $\lambda$ is real with $\lambda > 0$.


Proof

Let $\lambda$ be an eigenvalue of $A$ and let $\mathbf v$ be a corresponding eigenvector.

From Real Symmetric Matrix has Real Eigenvalues, $\lambda$ is real.

From the definition of a positive definite matrix, we have:

$\mathbf v^\intercal A \mathbf v > 0$

That is:

\(\ds 0\) \(<\) \(\ds \mathbf v^\intercal A \mathbf v\)
\(\ds \) \(=\) \(\ds \mathbf v^\intercal \paren {\lambda \mathbf v}\) Definition of Eigenvector of Real Square Matrix
\(\ds \) \(=\) \(\ds \lambda \paren {\mathbf v^\intercal \mathbf v}\)
\(\ds \) \(=\) \(\ds \lambda \paren {\mathbf v \cdot \mathbf v}\) Definition of Dot Product
\(\ds \) \(=\) \(\ds \lambda \norm {\mathbf v}^2\) Dot Product of Vector with Itself

From Euclidean Space is Normed Vector Space, we have:

$\norm {\mathbf v}^2 > 0$

so:

$\lambda > 0$

$\blacksquare$