Reciprocal as Summation of Binomial Coefficients of Reciprocals

From ProofWiki
Jump to navigation Jump to search

Theorem

$\forall n \in \Z_{>0}: \dfrac 1 n = \ds \sum_{k \mathop = 0}^{n - 1} \paren {-1}^k \dbinom {n - 1} k \dfrac 1 {k + 1}$

where $\dbinom {n - 1} k$ denotes a binomial coefficient.


That is, for example:

\(\ds \dfrac 1 1\) \(=\) \(\ds 1\)
\(\ds \dfrac 1 2\) \(=\) \(\ds 1 - \dfrac 1 2\)
\(\ds \dfrac 1 3\) \(=\) \(\ds 1 - 2 \times \dfrac 1 2 + \dfrac 1 3\)
\(\ds \dfrac 1 4\) \(=\) \(\ds 1 - 3 \times \dfrac 1 2 + 3 \times \dfrac 1 3 - \dfrac 1 4\)
\(\ds \dfrac 1 5\) \(=\) \(\ds 1 - 4 \times \dfrac 1 2 + 6 \times \dfrac 1 3 - 4 \times \dfrac 1 4 + \dfrac 1 5\)


Proof

\(\ds \sum_{k \mathop = 0}^{n - 1} \paren {-1}^k \dbinom {n - 1} k \dfrac 1 {k + 1}\) \(=\) \(\ds \frac 1 n \sum_{k \mathop = 0}^{n - 1} \paren {-1}^k \binom n {k + 1}\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 n \sum_{k \mathop = 1}^n \paren {-1}^{k + 1} \binom n k\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds \frac 1 n \paren {\sum_{k \mathop = 0}^n \paren {-1}^{k + 1} \binom n k + 1}\) $\paren {-1}^1 \dbinom n 0 = -1$
\(\ds \) \(=\) \(\ds \frac 1 n \paren {-\paren {1 - 1}^n + 1}\) Binomial Theorem
\(\ds \) \(=\) \(\ds \frac 1 n\)

$\blacksquare$


Sources