Relative Complement inverts Subsets/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $A \subseteq S, B \subseteq S$ be subsets of $S$.


Then:

$A \subseteq B \iff \relcomp S B \subseteq \relcomp S A$

where $\complement_S$ denotes the complement relative to $S$.


Proof

\(\ds A\) \(\subseteq\) \(\ds B\)
\(\ds \leadstoandfrom \ \ \) \(\ds A \cap B\) \(=\) \(\ds A\) Intersection with Subset is Subset‎
\(\ds \leadstoandfrom \ \ \) \(\ds \relcomp S {A \cap B}\) \(=\) \(\ds \relcomp S A\) Relative Complement of Relative Complement
\(\ds \leadstoandfrom \ \ \) \(\ds \relcomp S A \cup \relcomp S B\) \(=\) \(\ds \relcomp S A\) De Morgan's Laws: Relative Complement of Intersection
\(\ds \leadstoandfrom \ \ \) \(\ds \relcomp S B\) \(\subseteq\) \(\ds \relcomp S A\) Union with Superset is Superset

$\blacksquare$


Sources