Riemann Integral Operator is Linear Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $C \closedint a b$ be the space of continuous Riemann integrable functions.

Let $\R$ be the set of real numbers.

Let $I : C \closedint a b \to \R$ be the Riemann integral operator.


Then $I$ is a linear mapping.


Proof

Let $x, y \in C \closedint a b$ be Riemann integrable.

Let $\alpha \in \R$.


Distributivity

\(\ds \map I {x + y}\) \(=\) \(\ds \int_a^b \paren{\map x t + \map y t} \rd t\) Definition of Riemann Integral Operator
\(\ds \) \(=\) \(\ds \int_a^b \map x t \rd t + \int_a^b \map y t \rd t\) Linear Combination of Definite Integrals
\(\ds \) \(=\) \(\ds \map I x + \map I y\) Definition of Riemann Integral Operator

$\Box$


Positive homogenity

\(\ds \map I {\alpha x}\) \(=\) \(\ds \int_a^b \alpha \map x t \rd t\) Definition of Riemann Integral Operator
\(\ds \) \(=\) \(\ds \alpha \int_a^b \map x t \rd t\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \alpha \map I x\) Definition of Riemann Integral Operator

$\blacksquare$


Sources