# Right Ideal is Right Module over Ring

## Theorem

Let $\struct {R, +, \times}$ be a ring.

Let $J \subseteq R$ be a right ideal of $R$.

Let $\circ : J \times R \to J$ be the restriction of $\times$ to $J \times R$.

Then $\struct {J, +, \circ}$ is a right module over $\struct {R, +, \times}$.

### Corollary

Let $\struct {R, +, \times}$ be a ring.

Then $\struct {R, +, \times}$ is a right module over $\struct {R, +, \times}$.

## Proof

By definition of a right ideal then $\circ$ is well-defined.

### Right Module Axiom $\text {RM} 1$: (Right) Distributivity over Module Addition

Follows directly from Ring Axiom $\text D$: Distributivity of Product over Addition.

$\Box$

### Right Module Axiom $\text {RM} 2$: (Left) Distributivity over Scalar Addition

Follows directly from Ring Axiom $\text D$: Distributivity of Product over Addition.

$\Box$

### Right Module Axiom $\text {RM} 3$: Associativity

Follows directly from Ring Axiom $\text M1$: Associativity of Product

$\blacksquare$