Right Operation is Closed for All Subsets

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $\rightarrow$ be the right operation on $S$.

That is:

$\forall x, y \in S: x \rightarrow y = y$

Let $\powerset S$ be the power set of $S$.


Then for all $T \in \powerset S$, $\rightarrow$ is closed on $T$.


Thus, for all $T \in \powerset S$:

$\struct {T, \rightarrow}$ is a subsemigroup of $\struct {S, \rightarrow}$.


Proof

From Structure under Right Operation is Semigroup we have that $\struct {S, \rightarrow}$ is a semigroup, whatever the nature of $S$.

Let $T \in \powerset S$.

Then:

From Structure under Right Operation is Semigroup, $\struct {T, \rightarrow}$ is a semigroup, and therefore a subsemigroup of $\struct {S, \rightarrow}$.

This applies whatever $S$ is and whatever the subset $T$ is.

$\blacksquare$


Also see


Sources