Rule of Conjunction/Sequent Form/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The Rule of Conjunction can be symbolised by the sequent:

$\vdash p \implies \paren {q \implies \paren {p \land q} }$


Proof

This proof is derived in the context of the following proof system: Instance 2 of the Hilbert-style systems.

By the tableau method:

$\vdash p \implies \paren {q \implies \paren {p \land q} }$
Line Pool Formula Rule Depends upon Notes
1 $\neg p \lor p$ Law of Excluded Middle
2 $\paren {\neg p \lor p} \implies \paren {p \lor \neg p}$ Axiom $\text A 3$ $\neg p \,/\, p, p \,/\, q$
3 $p \lor \neg p$ Rule $\text {RST} 3$ 1, 2
4 $\paren {\neg p \lor \neg q} \lor \neg \paren {\neg p \lor \neg q}$ Rule $\text {RST} 1$ 3 $\paren {\neg p \lor \neg q} \,/\, p$
5 $\paren {\neg p \lor \neg q} \lor \paren {p \land q}$ Rule $\text {RST} 2 (1)$
6 $\paren {\paren {\neg p \lor \neg q} \lor \paren {p \land q} } \implies \paren {\neg p \lor \paren {\neg q \lor \paren {p \land q} } }$ Rule of Association $\neg p \,/\, p, \neg q \,/\, q, \paren {p \land q} \,/\, r$
7 $\neg p \lor \paren {\neg q \lor \paren {p \land q} }$ Rule $\text {RST} 3$ 5, 6
8 $p \implies \paren {q \implies \paren {p \land q} }$ Rule $\text {RST} 2 (2)$ 7

$\blacksquare$


Sources