Rule of Distribution/Conjunction Distributes over Disjunction/Left Distributive/Formulation 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\vdash \paren {p \land \paren {q \lor r} } \iff \paren {\paren {p \land q} \lor \paren {p \land r} }$


Proof

By the tableau method of natural deduction:

$\vdash \paren {p \land \paren {q \lor r} } \iff \paren {\paren {p \land q} \lor \paren {p \land r} } $
Line Pool Formula Rule Depends upon Notes
1 $\paren {p \land \paren {q \lor r} } \implies \paren {\paren {p \land q} \lor \paren {p \land r} }$ Theorem Introduction (None) Conjunction Distributes over Disjunction: Forward Implication
2 $\paren {\paren {p \land q} \lor \paren {p \land r} } \implies \paren {p \land \paren {q \lor r} }$ Theorem Introduction (None) Conjunction Distributes over Disjunction: Reverse Implication
3 $\paren {p \land \paren {q \lor r} } \iff \paren {\paren {p \land q} \lor \paren {p \land r} }$ Biconditional Introduction: $\iff \II$ 1, 2

$\blacksquare$