Rule of Distribution/Conjunction Distributes over Disjunction/Right Distributive/Formulation 1
Jump to navigation
Jump to search
Theorem
The conjunction operator is right distributive over the disjunction operator:
- $\paren {q \lor r} \land p \dashv \vdash \paren {q \land p} \lor \paren {r \land p}$
This can be expressed as two separate theorems:
Forward Implication
- $\paren {q \lor r} \land p \vdash \paren {q \land p} \lor \paren {r \land p}$
Reverse Implication
- $\paren {q \land p} \lor \paren {r \land p} \vdash \paren {q \lor r} \land p$
Proof
We apply the Method of Truth Tables to the proposition.
As can be seen by inspection, the truth values under the main connectives match for all boolean interpretations.
- $\begin{array}{|ccccc||ccccccc|} \hline (q & \lor & r) & \land & p & (q & \land & p) & \lor & (r & \land & p) \\ \hline F & F & F & F & F & F & F & F & F & F & F & F \\ F & F & F & F & T & F & F & T & F & F & F & T \\ F & T & T & F & F & F & F & F & F & T & F & F \\ F & T & T & T & T & F & F & T & T & T & T & T \\ T & T & F & F & F & T & F & F & F & F & F & F \\ T & T & F & T & T & T & T & T & T & F & F & T \\ T & T & T & F & F & T & F & F & F & T & F & F \\ T & T & T & T & T & T & T & T & T & T & T & T \\ \hline \end{array}$
$\blacksquare$
Sources
- 1988: Alan G. Hamilton: Logic for Mathematicians (2nd ed.) ... (previous) ... (next): $\S 1$: Informal statement calculus: $\S 1.2$: Truth functions and truth tables: Exercise $6 \ \text{(b)}$