Rule of Distribution/Disjunction Distributes over Conjunction/Left Distributive/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\vdash \paren {p \lor \paren {q \land r} } \iff \paren {\paren {p \lor q} \land \paren {p \lor r} }$


Forward Implication

$\vdash \paren {p \lor \paren {q \land r} } \implies \paren {\paren {p \lor q} \land \paren {p \lor r} }$


Reverse Implication

$\vdash \paren {\paren {p \lor q} \land \paren {p \lor r} } \implies \paren {p \lor \paren {q \land r} }$


Proof 1

By the tableau method of natural deduction:

$\vdash \paren {p \lor \paren {q \land r} } \iff \paren {\paren {p \lor q} \land \paren {p \lor r} } $
Line Pool Formula Rule Depends upon Notes
1 1 $p \lor \paren {q \land r}$ Assumption (None)
2 1 $\paren {p \lor q} \land \paren {p \lor r}$ Sequent Introduction 1 Disjunction is Left Distributive over Conjunction: Formulation 1
3 $\paren {p \lor \paren {q \land r} } \implies \paren {\paren {p \lor q} \land \paren {p \lor r} }$ Rule of Implication: $\implies \II$ 1 – 2 Assumption 1 has been discharged
4 4 $\paren {p \lor q} \land \paren {p \lor r}$ Assumption (None)
5 4 $p \lor \paren {q \land r}$ Sequent Introduction 4 Disjunction is Left Distributive over Conjunction: Formulation 1
6 $\paren {\paren {p \lor q} \land \paren {p \lor r} } \implies \paren {p \lor \paren {q \land r} }$ Rule of Implication: $\implies \II$ 4 – 5 Assumption 4 has been discharged
7 $\paren {p \lor \paren {q \land r} } \iff \paren {\paren {p \lor q} \land \paren {p \lor r} }$ Biconditional Introduction: $\iff \II$ 3, 6

$\blacksquare$


Proof by Truth Table

We apply the Method of Truth Tables to the proposition.

As can be seen by inspection, the truth values under the main connective is true for all boolean interpretations.

$\begin{array}{|ccccc|c|ccccccc|} \hline p & \lor & (q & \land & r) & \iff & (p & \lor & q) & \land & (p & \lor & r) \\ \hline \F & \F & \F & \F & \F & \T & \F & \F & \F & \F & \F & \F & \F \\ \F & \F & \F & \F & \T & \T & \F & \F & \F & \F & \F & \T & \T \\ \F & \F & \T & \F & \F & \T & \F & \T & \T & \F & \F & \F & \F \\ \F & \T & \T & \T & \T & \T & \F & \T & \T & \T & \F & \T & \T \\ \T & \T & \F & \F & \F & \T & \T & \T & \F & \T & \T & \T & \F \\ \T & \T & \F & \F & \T & \T & \T & \T & \F & \T & \T & \T & \T \\ \T & \T & \T & \F & \F & \T & \T & \T & \T & \T & \T & \T & \F \\ \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T & \T \\ \hline \end{array}$

$\blacksquare$


Sources

(erroneously referring to it as one of De Morgan's Laws)