Secant of i

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sec i = \dfrac {2 e} {e^2 + 1}$

where $\sec$ denotes the complex secant function and $i$ is the imaginary unit.


Proof 1

\(\ds \sec i\) \(=\) \(\ds \frac 1 {\cos i}\) Definition of Complex Secant Function
\(\ds \) \(=\) \(\ds \frac 1 {\frac e 2 + \frac 1 {2 e} }\) Cosine of $i$
\(\ds \) \(=\) \(\ds \frac {2 e} {e^2 + 1}\) multiplying denominator and numerator by $2 e$

$\blacksquare$


Proof 2

\(\ds \sec i\) \(=\) \(\ds \sech 1\) Hyperbolic Secant in terms of Secant
\(\ds \) \(=\) \(\ds \frac 2 {e^1 + e^{-1} }\) Definition of Hyperbolic Secant
\(\ds \) \(=\) \(\ds \frac {2 e} {e^2 + 1}\) multiplying denominator and numerator by $e$

$\blacksquare$


Also see