Second Order ODE/x^2 y'' + x y' = 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The second order ODE:

$x^2 y + x y' = 1$

has the general solution:

$y = \dfrac {\paren {\ln x}^2} 2 + C_1 \ln x + C_2$


Proof

The proof proceeds by using Solution of Second Order Differential Equation with Missing Dependent Variable.

Substitute $p$ for $y'$:

\(\ds x^2 \dfrac {\d p} {\d x} + x p\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds x \dfrac {\d p} {\d x} + p\) \(=\) \(\ds \frac 1 x\)
\(\ds \leadsto \ \ \) \(\ds x p\) \(=\) \(\ds \int \frac {\d x} x\) Linear First Order ODE: $x y' + y = \map f x$
\(\ds \) \(=\) \(\ds \ln x + C_1\) Primitive of Reciprocal
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds \frac {\ln x} x + \frac {C_1} x\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \int \paren {\frac {\ln x} x + \frac {C_1} x} \rd x\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac {\paren {\ln x}^2} 2 + C_1 \ln x + C_2\) Primitive of $\dfrac {\ln x} x$

$\blacksquare$


Sources