Semi-Inner Product with Zero Vector

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {V, \innerprod \cdot \cdot}$ be a semi-inner product space.

Let $\mathbf 0_V$ be the zero vector of $V$.


Then for all $v \in V$:

$\innerprod {\mathbf 0_V} v = \innerprod v {\mathbf 0_V} = 0$


Proof

\(\ds \innerprod {\mathbf 0_V} v\) \(=\) \(\ds \innerprod {0 \cdot \mathbf 0_V} v\)
\(\ds \) \(=\) \(\ds 0 \cdot \innerprod {\mathbf 0_V} v\) Semi-Inner Product Axioms: Sesquilinearity
\(\ds \) \(=\) \(\ds 0\)

$\Box$

\(\ds \innerprod v {\mathbf 0_V}\) \(=\) \(\ds \overline {\innerprod {\mathbf 0_V} v}\) Semi-Inner Product Axioms: Conjugate Symmetry
\(\ds \) \(=\) \(\ds \overline 0\) From above
\(\ds \) \(=\) \(\ds 0\)

$\blacksquare$


Also see


Sources