Semigroup/Examples/x+y+xy on Positive Integers

From ProofWiki
Jump to navigation Jump to search

Example of Semigroup

Let $\circ: \Z_{\ge 0} \times \Z_{\ge 0}$ be the operation defined on the integers $\Z_{\ge 0}$ as:

$\forall x, y \in \Z_{\ge 0}: x \circ y := x + y + x y$

Then $\struct {\Z_{\ge 0}, \circ}$ is a semigroup.


Proof

We have that:

$\forall x, y \in \Z_{\ge 0}: x + y + x y \in \Z_{\ge 0}$

and so $\struct {\Z_{\ge 0}, \circ}$ is closed.


Now let $x, y, z \in \Z_{\ge 0}$.

We have:

\(\ds x \circ \paren {y \circ z}\) \(=\) \(\ds x + \paren {y \circ z} + x \paren {y \circ z}\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x + \paren {y + z + y z} + x \paren {y + z + y z}\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x + y + z + y z + x y + x z + x y z\)


and:

\(\ds \paren {x \circ y} \circ z\) \(=\) \(\ds \paren {x \circ y} + z + \paren {x \circ y} z\) Definition of $\circ$
\(\ds \) \(=\) \(\ds \paren {x + y + x y} + z + \paren {x + y + x y} z\) Definition of $\circ$
\(\ds \) \(=\) \(\ds x + y + x y + z + x z + y z + x y z\)


As can be seen by inspection:

$x \circ \paren {y \circ z} = \paren {x \circ y} \circ z$

and so $\circ$ is associative.


The result follows by definition of semigroup.

$\blacksquare$


Sources