Semilattice has Unique Ordering such that Operation is Supremum

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \vee}$ be a semilattice.


Then there exists a unique ordering $\preccurlyeq$ on $S$ such that:

$x \vee y = \sup \set {x, y}$

where $\sup \set {x, y}$ is the supremum of $\set {x, y}$ with respect to $\preccurlyeq$.


Proof

Let us define a relation $\RR$ on $S$ as:

$\forall x, y \in S: x \mathrel \RR y \iff x \vee y = y$

From Semilattice Induces Ordering, we have that $\RR$ is an ordering.


Let us denote this ordering by $\preccurlyeq$, and recall its definition:

$x \vee y = y \iff x \preccurlyeq y$


Supremum

Let $x, y \in S$ be arbitrary.

Let $x \vee y = z$.


We have:

\(\ds x \vee y\) \(=\) \(\ds z\) by supposition
\(\ds \leadsto \ \ \) \(\ds x \vee \paren {x \vee y}\) \(=\) \(\ds x \vee z\)
\(\ds \leadsto \ \ \) \(\ds \paren {x \vee x} \vee y\) \(=\) \(\ds x \vee z\) Semilattice Axiom $\text {SL} 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds x \vee y\) \(=\) \(\ds x \vee z\) Semilattice Axiom $\text {SL} 3$: Idempotence
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds x \vee z\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds x\) \(\preccurlyeq\) \(\ds z\) Definition of $\preccurlyeq$
and:
\(\ds x \vee y\) \(=\) \(\ds z\) by supposition
\(\ds \leadsto \ \ \) \(\ds \paren {x \vee y} \vee y\) \(=\) \(\ds z \vee y\)
\(\ds \leadsto \ \ \) \(\ds x \vee \paren {y \vee y}\) \(=\) \(\ds z \vee y\) Semilattice Axiom $\text {SL} 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds x \vee y\) \(=\) \(\ds z \vee y\) Semilattice Axiom $\text {SL} 3$: Idempotence
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds y \vee z\) by hypothesis, and Semilattice Axiom $\text {SL} 2$: Commutativity
\(\ds \leadsto \ \ \) \(\ds y\) \(\preccurlyeq\) \(\ds z\) Definition of $\preccurlyeq$

Hence we see that $x \vee y$ is an upper bound of $\set {x, y}$ with respect to $\preccurlyeq$.


Now let $w$ be an arbitrary upper bound of $\set {x, y}$ with respect to $\preccurlyeq$.


That is:

$x \preccurlyeq w$ and $y \preccurlyeq w$

Then:

\(\ds x \vee w\) \(=\) \(\ds w\) Definition of $\preccurlyeq$
\(\ds y \vee w\) \(=\) \(\ds w\) Definition of $\preccurlyeq$
\(\ds \leadsto \ \ \) \(\ds x \vee \paren {y \vee w}\) \(=\) \(\ds x \vee w\)
\(\ds \leadsto \ \ \) \(\ds \paren {x \vee y} \vee w\) \(=\) \(\ds x \vee w\) Semilattice Axiom $\text {SL} 1$: Associativity
\(\ds \leadsto \ \ \) \(\ds z \vee w\) \(=\) \(\ds x \vee w\) as $x \vee y = z$
\(\ds \) \(=\) \(\ds w\) a priori
\(\ds \leadsto \ \ \) \(\ds z\) \(\preccurlyeq\) \(\ds w\) Definition of $\preccurlyeq$

So:

$x \vee y$ is an upper bound of $\set {x, y}$ with respect to $\preccurlyeq$
for every upper bound $w$ of $\set {x, y}$ with respect to $\preccurlyeq$, we have that $x \vee y \preccurlyeq w$

Hence, by definition, $x \vee y$ is the supremum of $\set {x, y}$ with respect to $\preccurlyeq$.

$\Box$


Uniqueness

It remains to be proved that the ordering $\preccurlyeq$, with the property that:

$x \vee y = \sup \set {x, y}_\preccurlyeq$

is unique.


Indeed, suppose there exists another ordering $\preccurlyeq'$ such that:

$x \vee y = \sup \set {x, y}_{\preccurlyeq'}$

We have:

\(\ds \sup \set {x, y}_{\preccurlyeq'}\) \(=\) \(\ds x \vee y\)
\(\ds \) \(=\) \(\ds \sup \set {x, y}_\preccurlyeq\) as $x \vee y$ is uniquely defined

The proof is complete.

$\blacksquare$


Also see


Sources