Sequence Converges to Within Half Limit/Complex Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {z_n}$ be a sequence in $\C$.

Let $\sequence {z_n}$ be convergent to the limit $l$.

That is, let $\ds \lim_{n \mathop \to \infty} z_n = l$ where $l \ne 0$.


Then:

$\exists N: \forall n > N: \cmod {z_n} > \dfrac {\cmod l} 2$


Proof

Suppose $l > 0$.

Let us choose $N$ such that:

$\forall n > N: \cmod {z_n - l} < \dfrac {\cmod l} 2$


Then:

\(\ds \cmod {z_n - l}\) \(<\) \(\ds \frac {\cmod l} 2\)
\(\ds \leadsto \ \ \) \(\ds \cmod l - \cmod {z_n}\) \(\le\) \(\ds \cmod {z_n - l}\) Reverse Triangle Inequality
\(\ds \) \(<\) \(\ds \frac {\cmod l} 2\)
\(\ds \leadsto \ \ \) \(\ds \cmod {z_n}\) \(>\) \(\ds \cmod l - \frac {\cmod l} 2\)
\(\ds \) \(=\) \(\ds \frac {\cmod l} 2\)

$\blacksquare$