# Sequence of Powers of Number less than One/Sufficient Condition

Jump to navigation
Jump to search

This article needs proofreading.Please check it for mathematical errors.If you believe there are none, please remove `{{Proofread}}` from the code.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Proofread}}` from the code. |

## Theorem

Let $x \in \R$.

Let $\sequence {x_n}$ be the sequence in $\R$ defined as $x_n = x^n$.

Let $\sequence {x_n}$ be a null sequence.

Then $\size x < 1$.

## Proof

By Reciprocal of Null Sequence:

- $\sequence {x_n}$ converges to $0$ if and only if $\sequence {\dfrac 1 {x_n} }$ diverges to $\infty$.

By the definition of divergence to $\infty$:

- $\exists N \in \N: \forall n \ge N: \size {\dfrac 1 {x_n} } > 1$

In particular:

- $\size {\dfrac 1 {x_N} } > 1$

- $\size {x_N} < 1$

That is:

- $\size {x_N} = \size {x^N} = \size x^N < 1$

Aiming for a contradiction, suppose $\size x \ge 1$.

By Inequality of Product of Unequal Numbers:

- $\size x^N \ge 1^N = 1$

This is a contradiction.

So $\size x < 1$ as required.

$\blacksquare$