Set Difference as Symmetric Difference with Intersection

From ProofWiki
Jump to navigation Jump to search

Theorem

$S \setminus T = S \symdif \paren {S \cap T}$

where:

$S \setminus T$ denotes set difference
$S \symdif T$ denotes set symmetric difference
$S \cap T$ denotes set intersection.


Proof

\(\ds S \symdif \paren {S \cap T}\) \(=\) \(\ds \paren {S \setminus \paren {S \cap T} } \cup \paren {\paren {S \cap T} \setminus S}\) Definition of Symmetric Difference
\(\ds \) \(=\) \(\ds \paren {S \setminus \paren {S \cap T} } \cup \O\) Set Difference of Intersection with Set is Empty Set
\(\ds \) \(=\) \(\ds \paren {S \setminus T} \cup \O\) Set Difference with Intersection is Difference
\(\ds \) \(=\) \(\ds S \setminus T\) Union with Empty Set

$\blacksquare$