Set Difference of Intersection with Set is Empty Set

From ProofWiki
Jump to navigation Jump to search

Theorem

The set difference of the intersection of two sets with one of those sets is the empty set.


Let $S, T$ be sets.


Then:

$\paren {S \cap T} \setminus S = \O$
$\paren {S \cap T} \setminus T = \O$


Proof

From Set Difference is Right Distributive over Set Intersection:

$\paren {R \cap S} \setminus T = \paren {R \setminus T} \cap paren {S \setminus T}$


Hence:

\(\ds \paren {S \cap T} \setminus S\) \(=\) \(\ds \paren {S \setminus S} \cap \paren {T \setminus S}\) Set Difference is Right Distributive over Set Intersection
\(\ds \) \(=\) \(\ds \O \cap \paren {T \setminus S}\) Set Difference with Self is Empty Set
\(\ds \) \(=\) \(\ds \O\) Intersection with Empty Set

$\Box$


\(\ds \paren {S \cap T} \setminus T\) \(=\) \(\ds \paren {T \cap S} \setminus T\) Intersection is Commutative
\(\ds \) \(=\) \(\ds \O\) from above

$\blacksquare$