Set Theory/Examples/A cup (X cap B) = C, (A cup X) cap B = D

From ProofWiki
Jump to navigation Jump to search

Example in Set Theory

Let $A, B, C, D$ be subsets of a set $S$.

Let there exist $X \subseteq S$ such that:

$A \cup \paren {X \cap B} = C$
$\paren {A \cup X} \cap B = D$

Then:

$A \cap B \subseteq D \subseteq B$

and:

$A \cup D = C$


Converse

Let the following conditions hold:

$A \cap B \subseteq D \subseteq B$

and:

$A \cup D = C$


Then these equations hold:

$A \cup \paren {X \cap B} = C$
$\paren {A \cup X} \cap B = D$

if:

$X = D \setminus A$


Proof

\(\ds D\) \(=\) \(\ds \paren {A \cup X} \cap B\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds D\) \(\subseteq\) \(\ds B\) Intersection is Subset
\(\ds D\) \(=\) \(\ds \paren {A \cup X} \cap B\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \paren {A \cap B} \cup \paren {X \cap B}\) Distributive Laws of Set Theory
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A \cap B\) \(\subseteq\) \(\ds D\) Intersection is Subset
\(\ds \leadsto \ \ \) \(\ds A \cap B\) \(\subseteq\) \(\ds D\) from $(1)$ and $(3)$
\(\ds \) \(\subseteq\) \(\ds B\)


Then:

\(\ds A \cup D\) \(=\) \(\ds A \cup \paren {A \cap B} \cup \paren {X \cap B}\) from $(2)$
\(\ds \) \(=\) \(\ds A \cup \paren {X \cap B}\) Union Absorbs Intersection
\(\ds \) \(=\) \(\ds C\) by hypothesis

$\blacksquare$


Sources