Set is Subset of Intersection of Supersets/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$, $T_1$ and $T_2$ be sets.

Let $S$ be a subset of both $T_1$ and $T_2$.


Then:

$S \subseteq T_1 \cap T_2$


That is:

$\paren {S \subseteq T_1} \land \paren {S \subseteq T_2} \implies S \subseteq \paren {T_1 \cap T_2}$


Proof

\(\ds S\) \(\subseteq\) \(\ds T_1\)
\(\, \ds \land \, \) \(\ds S\) \(\subseteq\) \(\ds T_2\)
\(\ds \leadsto \ \ \) \(\ds S \cap S\) \(\subseteq\) \(\ds S \cap T_2\) Set Intersection Preserves Subsets
\(\ds \leadsto \ \ \) \(\ds S\) \(\subseteq\) \(\ds T_1 \cap T_2\) Set Intersection is Idempotent

$\blacksquare$


Sources