Set is Subset of Union/Family of Sets/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\family {S_\alpha}_{\alpha \mathop \in I}$ be a family of sets indexed by $I$.


Then:

$\ds \forall \beta \in I: S_\beta \subseteq \bigcup_{\alpha \mathop \in I} S_\alpha$

where $\ds \bigcup_{\alpha \mathop \in I} S_\alpha$ is the union of $\family {S_\alpha}$.


Proof

Let $\beta \in I$ be arbitrary.

Then:

\(\ds \beta\) \(\in\) \(\ds I\)
\(\ds \leadsto \ \ \) \(\ds \set \beta\) \(\subseteq\) \(\ds I\) Singleton of Element is Subset
\(\ds \leadsto \ \ \) \(\ds \bigcup \set {S_\beta}\) \(\subseteq\) \(\ds \bigcup_{\alpha \mathop \in I} S_\alpha\) Union of Subset of Family is Subset of Union of Family
\(\ds \leadsto \ \ \) \(\ds S_\beta\) \(\subseteq\) \(\ds \bigcup_{\alpha \mathop \in I} S_\alpha\) Definition of Set Union

So it follows that:

$\ds \forall \beta \in I: S_\beta \subseteq \bigcup_{\alpha \mathop \in I} S_\alpha$

$\blacksquare$