Set of all Self-Maps under Composition forms Monoid

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $S^S$ be the set of all mappings from $S$ to itself.

Let the operation $\circ$ represent composition of mappings.


Then the algebraic structure $\struct {S^S, \circ}$ is a monoid whose identity element is the identity mapping on $S$.


Proof

By Set of all Self-Maps under Composition forms Semigroup, $\struct {S^S, \circ}$ is a semigroup.

By Identity Mapping is Left Identity and Identity Mapping is Right Identity the identity mapping on $S$ is the identity element of $\struct {S^S, \circ}$.

Since $\struct {S^S, \circ}$ is a semigroup with an identity element, it is a monoid by definition.

$\blacksquare$


Sources